FINAL REPORT

Stephanie Garcia
Jesiniel Nieves
Kenneth Padro
Roberto Rivera

INTRODUCTION

During September 2017 hurricane Maria hit Puerto Rico leaving the economically
depressed island with an environmental and human crisis. Almost 100% of Puerto Rico's
electrical grid was damaged and millions of people suffered the consequences in the
following months with no access to essential utilities. This crisis has aggravated by a lack
of government organization to restore and prioritize the recovery efforts. For this
reason, Lumos is a language that can be used to organize resources and visualize the
current recovery status of Puerto Rico utilities like water and power, among others. In its
core, it will be used to generate interfaces based on the government needs. For example,
in a specific region emergency reports will encompass electricity, water and food
sources. This will help gather only the important information needed. On the other hand,
being able to display this data will be helpful not only for the people but to the
government as well. Also, creating an accessible language in order to report this
emergencies will improve the communication between our government and the people.

LANGUAGE TUTORIAL

Requirements

e Eclipse IDE -
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R2/ecl
ipse-inst-mac64.tar.gz

Downloading and setting up project

e Visit the project website at https://robertoriveral6.github.io/Lumos/
e C(Click on the “download zip file”, save the file in the desired directory
e Extract the zip folder in the desired directory

e Using Eclipse IDE open the project by pointing to this directory

e You will see a directory structure as follow:

https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R2/eclipse-inst-mac64.tar.gz
https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R2/eclipse-inst-mac64.tar.gz
https://robertorivera16.github.io/Lumos/

ﬂ Lumus
2\ JRE System Library
& src
g% (default p

mj LumusTokenhana
> B Municipality.java
I E ParseException.java

B Region.ja
Sector.ja
L EEimplr:l.':r'u.arﬂtrﬂarr'u.ja'u'a

grError.java
I LumusGrammar.jj
B tester.lumus
B README.md

B test

e You have successfully imported the project

Installing and setting up JavaCC

e Toinstall JavaCC, in Eclipse go to: Help>Eclipse Marketplace...
e In this windows type “javacc” on the search bar
e You will see the following result:
JavaCcC Eclipse Plug-in 1.5.33
The JavaCC Eclipse Plugin provides a JavaCC & JTB editor, views, and builder

which process .jj, .jjt & .jtb files and integrates with Eclipse's incremental build...

by

Installs: 18.0K (200 last month) Installed

e C(lick on the Install button and Accept the terms and conditions
e You have successfully installed JavaCC plugin to the Eclipse IDE

Compiling and generating required files

e Before compiling the project you will need to delete some pre-generated files.
These are:
o LumusConstants.java
o LumusTokenManager.java
o ParseException.java

o Token.java
o TokenMsgError.java
e To compile and run the project you need to right click the “LumusGrammar.jj” file
then click “Compile with javacc | jjtree | jtb”
e This will re-generate LumusConstants.java, LumusTokenManager.java,
ParseException.java, Token.java, TokenMsgError.java
e Now proceed to compile and run “Lumus.java”
e The following screen will pop up:

Lumus [Java Application] /LibraryfJavajJavaVirtualMachines/jdk1.8.0_101.jdk/Contents/Home/bin/fjava |
Lumus Scanner:

e You are now ready to start using Lumus!
Using Lumus

e Ifyou ever need help you can type “help” to bring up available commands

e To declare a municipality type: municipality mun = “Mayaguez”

e You have successfully created your first municipality element “mun”

e Toreport a ward of this municipality without power use:
report(mun, “Trastalleres”, power, no)

e Now the municipality element holds the “Trastalleres” ward

e You may add many more wards with their corresponding power or water status.

e If you want to see the information of power or water within all wards of a
Municipality you can use: analyze(mun, power) or analyze(mun,power,water)

e To show basic statistics of a municipality use showstatistics(mun)

e Sometimes you might want to group various municipality together

e In Lumus there is a variable type called “region”

e Type region oeste = “Region Oeste”

e To add municipalities to this region type addmunicipality(oeste,mun)

e This will add mun [“Mayaguez”] to oeste[“Region Oeste”]

e You can add many more municipalities to a region

e If you want to see the statistics of a specific Region you may use:

showstatistics(oeste)

LANGUAGE REFERENCE MANUAL

This reference manual outlines the technical details found in Lumos

programming language:

1. Lexical Analyzer
a. Ignored tokens

i. “\r” - Carriage return
ii. “\t” - Horizontal tab character
iil. “\n” - New line
2. Identifiers and keywords
a. “water”
b. “power”
c. “yes”
d. “no”

3. Expressions

Expression Parameters Description
municipality N/A Command to declare a
municipality variable
analyze municipality Lets you see the actual
option status of the option
(water or power) of all
wards within that
municipality
analyze municipality Lets you see the actual
option status of water and
option power of all wards within
that municipality
report municipality - variable This is used to report
containing the municipality water or power for a
element ward within a

“sectorname” - a string of the municipality.
ward name
option - desired option to report
(water or power)
availability - (yes or no)
showstatistics municipality - The municipality | Show basic statistics of
which data you will like to the chosen municipality
display
region N/A Command to declare a
region variable
addmunicipality | region - the region in which the | Add the desired
municipality is located municipality to the
municipality - the municipality | chosen region
that will be added to the specified
region
showstatistics region - The region which data Show statistics of all
you will like to display municipalities contained
in the region.
LANGUAGE DEVELOPMENT

Translator architecture

@Lumus
T

@LumusGrammar

S

@ Region I

@ Municipality
@LumusTokenManagerI

@ report()
@ getNextTokenl) I @ analyzel)

@ showStatistics()

@Sector

@ addmunicipality()
@ showStatistics()

Describe the interfaces between the modules.

JavaCC is a Lexical Analyser Generator and a Parser Generator. As input

JavaCC will accept a set of regular expressions (each of which describes a
type of token in the language), and a grammar defined using these tokens
as constants. In exchange JavaCC will produce an output with the lexical
analyser, which reads an input file and separates it into tokens, and a
parser which reads an input file (or input using terminal) and performs a

options{

}

syntax analysis on it. Our JavaCC file in our project have the form
LumosGrammar.jj. This file will be compiled with the JavaCC command
and it will generate the following files:

e Lumos.java - parser
e LumosTokenManager.java - lexical analyser
e LumosConstants.java - useful constants

The JavaCC file structure is as follows:

PARSER_BEGIN(Lumus)
public class Lumus {

}
PARSER_END(Lumus)

TOKEN :
{

When we run javacc on the input file LumusGrammar.jj, it produces the
class LumusTokenManager. This class contains the static method
getNextToken(). Every call to getNextToken() returns the next token in the
input stream. When getNextToken() is called, a regular expression is found
that matches the next characters in the input stream.

Describe the software development environment used to create the Translator.

Eclipse IDE - Eclipse is an integrated development environment used in
computer programming, and is the most widely used Java IDE.

JavaCC plugin for eclipse - JavaCC is an open source parser generator and
lexical analyzer generator written in the Java programming language.
JavaCC is similar to yacc in that it generates a parser from a formal
grammar written in EBNF notation

Describe the test methodology used during development.

We used the Functional Testing methodology.These tests were checked
upon the correctness of the output in relation of the input. In our project,

we checked that each and every command we give to the parser is
processed as we intended and produced the output we wanted.

Show program used to test your translator.
municipality munl = "Mayaguez"
report(munl, "Mango", power, yes)
report(munl, "Terrace", water, yes)
report(munl, "Terrace", power, yes)
report(munl, "Colegio", power, yes)
report(munl, "Colegio", water, yes)
report(munl, "Mani", power, no)
report(munl, "Mani", water, no)
municipality mun2 = "Lares"
report(mun2, "Piletas", power, no)
report(mun2, "Piletas", water, yes)
report(mun2, "Barrio Pueblo", power, yes)
report(mun2, "Barrio Pueblo", water, yes)
report(mun2, "Callejones", power, yes)
analyze(munl, water)
analyze(mun2, power, water)
region oeste = "Region Oeste"
addmunicipality(oeste, mun1)
addmunicipality(oeste, mun2)
showstatistics(oeste)

CONCLUSIONS

After working on this project and understanding the process behind a compiler
we acquire fundamental knowledge to develop programming languages. For instance in
Lumos we had to make sure of designing a flexible and easy to understand language for
the user. Technically the process of seeing how the lexical analyzer and the parser works
gave us the big picture of all the effort behind a robust programming language.

With this project we want to point out the importance of prioritizing the
development of tools that help people in times of crisis. The main goal of Lumos at the
end is managing and helping with the extended recovery process of our Island. We hope
that with an extension of the features that this program has, government agencies
implement similar systems to their services.

